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Spherical vortex motions of a conducting fluid 
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University of Toronto 

(Received 12 September 1969 and in revised form 2 June 1970) 

Some exact solutions of the steady M.H.D. equations for an inviscid infinitely 
conducting fluid are discussed, and a generalization of the Prendergast model for 
an idealized magnetic star is obtained, in which there is a finite azimuthal swirl 
velocity of the fluid. The flow in all examples is bounded by a sphere and expres- 
sions are found for the distribution of energy between the fluid motion and 
magnetic field. 

Introduction 
Studies of the motion of a highly ionized medium or infinitely conducting 

inviscid fluid in the presence of a magnetic field are of astrophysical interest in 
connexion with idealized models of magnetic stars. Ferraro (1954) found a general 
condition which must be satisfied by any poloidal magnetic field in equilibrium 
with an incompressible fluid, and gave the first-order calculations of the eccentri- 
city of an equilibrium spheroid in which the leading term for the exterior field 
was that of a magnetic dipole. Roberts (1955) extended this work by obtaining 
a series expansion for the equation of the surface of a body with Perraro’s field. 
Lust & Schliiter (1954) studied the case in which the magnetic field and electric 
current are everywhere parallel. Since such a field exerts no force, it  can be 
imbedded in any conducting fluid and therefore, possesses the advantage that 
the pressure is constant over the surface. Prendergast (1956) generalized the 
force-free field solution of Lust & Schluter by obtaining a solution of the magneto- 
hydrostatic equations in which the magnetic field vanishes on the surface of a 
sphere, and the sphere is a surface of constant pressure. It is also to be noted that 
Chandrasekhar (1956 a, c )  gave explicit expressions for a large class of force-free 
fields. In  all these configurations, the fluid is either at  rest or rotating with 
constant angular velocity like a rigid body. There are few examples of flows in 
which the fluid velocity has a poloidal component. In  one such example (studied 
by Chandrasekhar 1956b), the streamlines for the fluid motion and the magnetic 
lines of force coincide. This solution gives rise to an equipartition of energy 
densities between magnetic field and fluid motion, and has been shown to be a 
stable solution of the equation of motion. 

In  this paper some examples of flows, which are exact solutions of the equations 
of motion, are described for the case in which a finite motion of the fluid takes 
place in the presence of a magnetic field. The first flow discussed is an axially 
symmetric fluid motion (in a spherical container) in the presence of a toroidal 
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magnetic field. The streamlines for the flow are similar to those of a Hill's 
spherical vortex, and nest about a stagnation point in the equatorial plane. If the 
magnetic field vanishes on the sphere the current density becomes infinite on the 
surface, but the total current contained by the sphere is finite, and there is a 
partition of the total energy in which the toroidal energy of the magnetic field is 
twice that of the fluid motion. If the region exterior to the sphere is non- 
conducting, and the magnetic field is discontinuous at the surface, there is a 
surface current sheet, and it is shown that the magnetic field energy is at  least 
twice the energy of the fluid motion. An analogue of this solution is shown to 
exist for a finite swirl motion of the fluid in the presence of a poloidal magnetic 
field. These solutions are generalized by including the effects of a swirl motion of 
the fluid and a toroidal field respectively. This, of course, alters the distribution 
of energy between the magnetic field and fluid motion, and can be adjusted to 
give an equipartition of energy, which, from Chandrasekhar's work, suggests 
stability of the flow configuration. A variational principle is presented which 
characterizes these flows. Two other flow configurations are studied which have 
some relevance to idealized models of a magnetic star. The first of these is a 
general axially symmetric flow (poloidal and toroidal) in the presence of a 
toroidal magnetic field. Both the magnetic field and fluid velocity vanish on the 
sphere, so that the sphere is a surface of constant pressure and the motion inside 
the sphere is finite. The second flow is a generalization of the Prendergast (1956) 
model, in which a finite swirl motion of the fluid takes place in the presence of a 
general axially symmetric magnetic field. The magnetic field and fluid velocity 
vanish on the boundary so that the sphere is a surface of constant pressure and all 
the physical quantities of interest are finite inside the sphere. 

Equations of motion 
The equations of steady motion for an inviscid infinitely conducting fluid are 

P ( q  - v) q +p[H A curl HI = - gradp, 

curl [q A HI = 0, 

divq = 0, divH = 0, 

where q is the fluid velocity, H the magnetic field, p the pressure, ,u the magnetic 
permeability, and p the density. Let (2, o,$ )  be cylindrical polar co-ordinates 
and consider a flow for which the fluid velocity is axially symmetric in the 
presence of an axially symmetric magnetic field. The velocity and magnetic 
fields may be written in the forms 

(:I: q = curl[?$)+--$, V H = curl - -4 +-, 
w 

where 6 is the unit vector directed perpendicular to the azimuthal plane 
q5 = constant, and in the sense of 9 increasing. 9 is the Stokes stream function, 
x is the flux function for the poloidal field and V/w is the rotational or swirl 
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component of the fluid velocity field. In  terms of $, V ,  x and U ,  the equations 
of motion are 

where the Stokes operator L-l is defined by 

These equations have been given in a slightly different form by Chandrasekhar 
(1956) and Lust & Schluter (1954) for the more general case in which diffusion 
terms are included. The pressure is determined from the equations 

1 a$ p ~ a u  v a v  ap 
p w2 az 02 az pw2 az w2 az az 
!! L ax L-,(X) - - - L- (4) + - - - - - - = - - 

P = P -+&1q1? where 

It is to be noted that there is a solution of (1) given by g = (PIP)* H, and the 
stability of this solution has been investigated by Chandrasekhar (19563). 

P 

Flow without swirl in the presence of a toroidal field 
In  this case V = x = 0,  and the equations of motion are 

2ru u au 
p w2 az 

a{@, L-l($)bJ21 = 0, 
w )  

+ W  -- - (4) 

and it is to be noted that the magnetic field is orthogonal to the fluid velocity. 
Equation (5) implies, in general, that 

u = @ 2 f ( $ ) ,  (6) 

where f is an arbitrary function, so that, if (6) is substituted in (4), the former 
equation is of the form 

which may be written as 

a{$., G I 4  = 0, 
w )  

31-2 
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Thus, in general, 

G = L($) +e W"f$)f'($) = w"($), 

1, + i P  \curl ( - $10) $I = @J?f2($) - P p W )  w. 

(10) P 
where P is an arbitrary function. The pressure is given by 

( 1 1 )  

JY$) = 0, f ($If'($) = K, ( 1 2 )  

Some special forms for f and F are now considered which permit solutions of (10) .  
Set 

where K is a positive constant, so that 

f "$ )  = 2K$ +a,, 

where a1 is a constant, and (10) reduces to 

L1($) = - (7) - w4, 

where @-l) is a general solution of L1{$(-1)} = 0. If spherical polar eo-ordinates 
( r ,  8) are defined by x = r cos 8, w = r sin 8, p = cos 8, then ( 1 4 )  may be rewritten as 

Now ( 1 6 )  yields solutions which are regular in a simply connected domain, and 
the simplest boundary to consider is a sphere r = a.  In  this case, an appropriate 
form for $ is given by 

?f+ = 4 ( r )  ( 1 - P 2 )  (5P2-  l )+F,(r )  ( 1 - P 2 ) ,  ( 1 7 )  

and the equations to be satisfied by Fl and F2 are 

If the sphere is a streamline, then P(u) = G(a) = 0, and, assuming the motion is 
finite inside the sphere, the required solutions are 

(19) 
KP K P  
90P 35P 

Fl(r) = ~ (r6-a2r4) ,  F2(r) = ~ (a4r2-rC); 

y? may be written as 

@=,,, , ,  K p  (a2-r2)r2(1  -P2){18(a2-r2)+8r2+35r2(1 -/I2)>, (20) 

which is clearly positive inside the sphere r = a.  Set h = r/u, A = Kpa"630p. 
Then ( 2 0 )  is replaced by 

$ = Ah2( 1 - h2) [ 18 - 10h2 + 35( 1 - p2)] ( 1 - P Z ) .  (21) 
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The components of fluid velocity are 

The radial component u vanishes at  p = 0, or 8 = in- (that is, on the equatorial 
plane and also at  r = a, since the surface is a streamline). The tangential com- 
ponent v vanishes at sin 6' = 0 (that is, 8 = 0), so the poles are stagnation points 
for the flow. u also vanishes for 

75h4- 14h2- 18 = 0, 

7 41399 h2 = 
75 ' 

or, equivalently, 

(23) 

(24) 

The negative sign is inadmissible, so that there is a stagnation line in the equatorial 
plane given by 

7 +,/1399 4 
,,=a( 75  ] , e =  in-. 

It is readily verified that on 6' = &T, v is positive for 0 < r < ro and negative for 
ro < r < a, so that the fluid rotates in the azimuthal plane in closed streamlines 
about the stagnation point inside the sphere. Now, it is supposed that the region 
exterior to the sphere is non-conducting, and the exterior magnetic field vanishes 
in the region r > a, since the only non-zero toroidal field, satisfying the equations 

curl H = 0, div H = 0, (26) 

is singular on the axis. The magnetic field is continuous on the sphere r = a if 
a, = 0 in (13), and is then given by 

H = (2K$)t u$. (27) 

The current density j is defined by 

i a  i a  
r sm 8 ar r2 ap 

j = curlH = -- [(2K$)4r2(1 - p 2 ) ] P + 7  - [(2K$)*r2(1-p2)]8, (28) 

so that (j . P )  = 0 on r = a, and the tangential component (j .8) becomes infinite 
like (a-r)-a on r = a, but the total current inside the sphere is zero. If a, > 0, 
the (tangential) magnetic field is discontinuous a t  r = a and there must be a 
surface current sheet on the boundary of the sphere. In  this case, the magnetic 
field inside the sphere is given by 

H = u{2K@ + a$ 4, (29) 

and the current density is given by (28), in which 2K$ is replaced by 2K$+aa,. 
The pressure distribution is determined from the equation, 

(30) 

so that in the case a, = 0, the total head of pressure is a constant on the sphere, 
while the pressure is proportional to the square of the tangential velocity 
(l(rsin8) (a$/&). Now, the energies of the fluid motion and magnetic field are 
given by 

p + &pq2 = 2pK@ +pa,u2 + constant, 

T' = $ p l v  lqI2dv7 T'I = IHI2dfl, (31) 
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where the integration is carried out over the region bounded by the sphere. If 
a, = 0, then it is found that 

2TL = TM = ,uK/ $u2dv, 

TIM = p K s  V $ u 2 d v + T / 0 2 d v ,  

(32) 
v 

so there is a partition of the total energy in which the magnetic field energy is 
twice the kinetic energy of the fluid motion. For the case in which a, > 0, TM is 
replaced by 

(33) 

so that T, > 2TL, or the magnetic field energy is at  least twice as large as the 
kinetic energy of the fluid motion. These results are valid for any axially sym- 
metric closed surface in which $ satisfies (14) and the relevant boundary condi- 
tions on S. 

FIGURE 1. Diagram of the spherical vortex streamlines showing 
stagnation points on the equator and at the poles. 

By setting F($) = -a, a > 0, a slight generalization of (20) is obtained, and 
the stream function satisfying the boundary conditions is 

= 630p(a2-r2)r2(1-~2)[18(a2-r2)+8r2+35r2(1-~2)] KP 

+ &a(aZ - r2) v2( 1 - p2). (34) 

The second term is that for the interior motion of a Hill’s spherical vortex, and 
the flow is qualitatively similar to the case a = 0. Again, alinear partial differential 
equation for $ is also obtained by setting f ($) = y$, where y is a constant and 

H = yw$.d, 
where $ satisfies the equation 

(35) 

There are no separable solutions of this equation in spherical co-ordinates, and 
a solution will not be attempted here. However, it might be mentioned that, if 
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$ = 0 on 8, then there is an equipartition of energy between the magnetic field 
and fluid motion, in which 

and, in addition, all the physical quantities, pressure, velocity, current density 
are finite inside X. Thus, a solution of (36) with @ = 0 on 8 may be a stable solution 
of the equations of motion for an axially symmetric fluid motion in the presence 
of a toroidal magnetic field. The results in this section may be generalized by 
observing that, iff ($) = K$lln, then $ satisfies 

(38) 
L-,($) + - P K2~4$(2/m)-~ = 0 

nP 

and T' = nTL. However, it is not clear for what values of n (38) yields solutions 
which are finite inside 8. Finally, it is pointed out that solutions of 

L($) + ( d P )  UYWf '(I4 = 0 (39) 

yield stationary values of the integral, 

Flow with azimuthal swirl 
If azimuthal swirl is added to the fluid motion, the equations of motion are 

Thus, in general, U = @($), V = g($), and the equation for +k is 

G = U + k )  + (P/P) wY((9)f'(+k) +d$) 9'($) = 02P($). ( 4 2 )  

As before, write f2($) = 2K+k+a1, and set g($) = ol$, P = 0, where a is a 
constant. Then (42)  reduces to 

A general solution is given by 

where qi is a general solution of 
(L-1+ a2) 95 = 0. 

( 4 3 )  

(44) 

(45) 
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where J,,&(ar), n = 1 ,3 ,  is the Bessel function of fractional order. If @ = 0 
vanishes on r = a, the constants A and B are given by 

where it is supposed J$(aa), J3(aa) =k 0. If a, > 0, then the fields, vorticity, 
pressure and current are finite inside the sphere. For motion inside an axially 
symmetric closed surface S containing a region v, the kinetic energy and magnetic 
field energy are readily shown to be 

These expressions are valid for any motion satisfying (53 )  and the boundary 
condition $ = 0 on X. The kinetic energy of the fluid motion is clearly increased 
by the rotation or swirl of the fluid, and an equipartition of the total energy exists 
if 

By setting F(I++) = K ,  a constant, the equation satisfied by I++ is 

(51) 
P 
P 

L,(I++) + a2$ = - - Ku4 + K,w2. 

This equation is a generalization of the equation (43 )  for the case K = 0. If K ,  is 
regarded as an arbitrary constant, the general solution is 

I++.=-- p K  u 4  -I- Aw2 + #, 
Pa2 

where A is a constant related to K,  by K,  = Aa2- 8pK/pa2 ,  and q5 is a general 
solution of (45). In  the present case, a suitable solution for I++ is 
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A solution is sought which satisfies the condition of zero velocity on the sphere, 
so that the boundary conditions reduce to 

4pKa4 
Aa2Ba4Jg(aa) -- - = 0, 

5 pa2 

1 6a4pK 
2Aa2 +Bat &J&au) + aaJi(aa) - ~ = 0. 

5pa2 
The constants A ,  B and C are found to be 

pa2 5 3Jg(aa) - 2aaJi(aa) 
A = [!+ 

1 6a4p K z 
a+p2  34(aa) - 2aaJi(an) ’ 

5pa2a+J4(aa) ’ 

B=--  

C = - -  pKa4 

provided that aa is a root of the equation, 

7J$(aa) - ZaaJ&aa) = 0. 

(54) 

( 5 5 )  

Thus, (53) represents an exact solution of the magnetohydrodynamic equations 
for an infinitely conducting fluid sphere in the presence of a toroidal magnetic 
field. If a, = 0, the magnetic field vanishes on the boundary, and the current is 
finite for r < a. The pressure is now given by 

2 + ; = e K,+ - KP - a 2 @  + constant. 
P P P (57) 

Also of interest is the fact that the fluid velocity vanishes on the sphere, which 
implies that the sphere is a surface of constant pressure. 

The kinetic energy of the fluid motion is now given by 

Flow with a poloidal field 

a is a constant, then the equation satisfied by @ is 
In  this case, the equations of motion are very nearly the same if x = a+, where 

which, in general, implies that 



490 K .  B. Ranger 

Set F = 0, f2((lC.) = 2K$ ,  then the stream function is given by 

where p + a2p. In  this motion, the fluid behaves in a similar manner to the 
previous flows, but takes place in the presence of both a poloidill and toroidal 
magnetic field. The total energy is T = TL + T,,, where 

Azimuthal swirl of the fluid in the presence of a poloidal and toroidal 
magnetic field 

In this case, (lC. = 0 in (31, and the equations of motion reduce to 

The latter two equations imply that 

v = W W X ) ,  u = dx), 
where f and g are arbitrary functions. The equation satisfied by x is then 

(64) 

which implies, in general, that 

L-AX) + (PIP) W Y ( X ) f ’ ( X )  + A x )  9’(x) = w2F(x), ( 6 6 )  

( 6 7 )  

where F is arbitrary. First set F = 0, f (x) f’(x) = ,uK/p, g ( x )  = ax. Then x 
satisfies L-,(x) + a2x = - Kw4, 

for which a general solution is 
K w 4  8 K w 2  
a2 ad x = -~ +-+A 

where q5 is a general solution of (55 ) .  For the case of a sphere, an appropriate 
solution is 

x = Ar*J.( ccr) ( 5P2 - 1) ( 1 - P2) + Br+J%(ar) ( 1 - p 2 ) ,  (69) 

where A and B are arbitrary constants. The region exterior to the sphere is 
supposed non-conducting; then the boundary condition on the magnetic field is 
(j . e) = (curl H . P) = 0, r = a. This is equivalent to x = 0, r = a, which also 
implies that ( H . P )  = 0, T = a (that is, the normal field vanishes on the sphere). 
The constants A and B are found on calculation to be given by 

4Ka4a2- 40Ka2 
B =  A = - Ka4 

5a2a34 (aa) ’ 5a%qj(aa) 
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Now f 2 ( x )  = (2p/p) Kx+a& where a, is a constant and the fluid velocity is 
given by 

So the fluid on the surface of the sphere is rotating with constant angular velocity 
a,, since x = 0, r = a. If a, = 0,  the sphere is a surface of constant pressure. The 
current density is finite everywhere inside the sphere. 

The case a = 0 

In  this situation, there is no toroidal magnetic field, and 

L-,(x) = - K w ~ .  
The solution for x satisfying the boundary condition is 

x = ( K / 6 3 0 )  (a2 - r2)  r2( 1 -,@) {18(a2-rr2) + 8r2 + 35r2(1 -p2)}. (73 )  
The magnetic field has a neutral point at r = ro, /3 = 0;  and the magnetic lines 
of force are those of the spherical vortex described in the previous sections. It is 
of interest to note that the roles of the fluid and magnetic field are effectively 
reversed in this type of flow, since there is a partition of the energy in which 

P 

that is, the kinetic energy of the fluid is twice that of the magnetic field. Equation 
(74) is valid only for the case a, = 0, so that the fluid velocity vanishes on the 
surface, but the vorticity of the fluid is infinite on the surface like (a - r)+ as 
r -+ a. The pressure in the fluid is given by 

P 2p6.P P = -++1qI2 = --Kx+constant, 
P P 

(75 )  

so that the sphere is a surface of constant pressure. By setting P(x)  = A ,  a con- 
stant, the equation for x may be extended to the form 

This case has been investigated by Prendergast (1956) for the case V = 0 (no 
azimuthal velocity field). The advantage in considering solutions is that it  is 
possible to find a true equilibrium configuration for the sphere in which the 
magnetic field vanishes on the surface and the sphere is a surface of constant 
pressure. A suitable solution of (76 )  is 

(L-l+a2)x = - K w ~ + A ~ w ~ .  (76 )  

where A ,  B, C are arbitrary constants. The magnetic field on r = a vanishes if 
x = axjar = 0, r = a. The constants A ,  B and C are then given by 
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where aa is a root of the equation, 

7Js(aa) - ~olaJi(aa) = 0. (80) 

The exterior of the sphere is supposed non-conducting, and the field is zero for 
r > a, and is therefore continuous at  the surface. The pressure is given by 

so that if a, = 0,  the fluid velocity vanishes on the surface and the configuration 
is one of true equilibrium, since p is a constant over r = a. Both the vorticity and 
current are finite over the interior of the sphere, and the boundary condition 
(j . P )  = 0 is satisfied at the surface r = a. If a, + 0, then the configuration corre- 
sponds to one of quasi-equilibrium, since p does not vanish at  the surface. Also, 
in this case the boundary is rotating with constant angular velocity a,. Thus, (87) 
may be regarded as a generalization of the true equilibrium configuration for a 
fluid sphere found by Prendergast, in which the additional effect of azimuthal 
swirl of the fluid has been included. The kinetic energy of the fluid is given by 

r 

and the magnetic energy is 

where A = Al/az + 8K/a4. 

Other equilibrium configurations 
Analogous to (35) and (36), setf(X) = (p/p)*ax, g = R = 0, then x satisfies 

L , ( x )  + a"4x = 0, (84) 

and the boundary conditions are satisfied if x = 0, r = a. There is an equiparti- 
tion of energy between the fluid motion and magnetic field energy, but, due to 
the fact that (84) does not possess separable solutions in spherical polar co- 
ordinates, it is not possible to determine the solution for a sphere. 
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